skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "AD"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 23, 2026
  2. Denitrification accounts for a substantial nitrogen loss from environmental systems, shifting microbial composition and impacting other biogeochemical cycles. In Antarctica, rising temperatures cause increased organic matter deposition in marine sediments, which can significantly alter microbially mediated denitrification. To examine the genetic potential of microorganisms driving N-cycling in these sediments, benthic sediment cores were collected at two sites in the Weddell Sea, Antarctica. DNA was extracted from multiple depths at each site, resulting in the reconstruction of 75 high-quality metagenome-assembled genomes (MAGs). Forty-seven of these MAGs contained reductases involved in denitrification. MAGs belonging to the genus Methyloceanibacter were the most abundant MAGs at both sites and all depths, except depth 3–6 cmbsf at one site, where they were not identified. The abundance of these Methyloceanibacter MAGs suggests the potential for nitrate-driven methanol oxidation at both sites. MAGs belonging to Beggiatoaceae and Sedimenticolaceae were found to have the genetic potential to produce intermediates in denitrification and the complete pathway for dissimilatory nitrate reduction to ammonia. MAGs within Acidimicrobiia and Dadabacteria had the potential to complete the final denitrification step. Based on MAGs, Antarctic peninsula sediment communities have the potential for complete denitrification and dissimilatory nitrate reduction to ammonia via a consortium. 
    more » « less
    Free, publicly-accessible full text available May 21, 2026
  3. Given the integrated nature of food-energy-water systems (FEWS), stakeholder engagement is central to developing solution-oriented projects. However, effective engagement requires substantial time and resources, by both the organization conducting the project and the stakeholders themselves, making effective engagement challenging for many projects. To help teams prioritize, prepare, and sustain stakeholder-engaged environmental projects, we propose a methodological foundation for effective engagement based on six gears: diversity, listening, value, trust, accountability, and flexibility/adaptability. The application of these gears is demonstrated using a set of case studies in Arizona, Idaho, Mexico, and Guatemala. In practice, incorporating all the gears during stakeholder engagement can be challenging. This framework can help teams implement and foster more sustained, comprehensive, robust, actionable, equitable, inclusive, and timely engagement, processes, and outcomes. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  4. Efforts to address declines of North American birds have been constrained by limited availability of fine-scale information about population change. By using participatory science data from eBird, we estimated continental population change and relative abundance at 27-kilometer resolution for 495 bird species from 2007 to 2021. Results revealed high and previously undetected spatial heterogeneity in trends; although 75% of species were declining, 97% of species showed separate areas of significantly increasing and decreasing populations. Populations tended to decline most steeply in strongholds where species were most abundant, yet they fared better where species were least abundant. These high-resolution trends improve our ability to understand population dynamics, prioritize recovery efforts, and guide conservation at a time when action is urgently needed. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  5. Lindgren, R; Asino, T I; Kyza, E A; Looi, C K; Keifert, D T; Suárez, E (Ed.)
    Elementary grade teachers are often not fully prepared to teach a computing-rich curriculum, and the demand of the digital age to integrate Computational Thinking (CT) into their classrooms has put them at a challenge. Under the larger umbrella, abstraction lies at the heart of CT. Abstraction allows moving between various information levels while targeting complex problems and creating rich design solutions. This study focuses on how one pair of elementary-grade teachers collaborated, using abstraction to solve a maze challenge, helping each other move between different layers of information. The videotaped data of one day of teachers' professional development was analyzed through three dimensions of Community of Practice (CoP). Results suggest that through mutual engagement in pursuing a joint enterprise and their shared repertoire, elementary-grade teachers moved their focus between different levels of abstraction simultaneously and effectively. 
    more » « less
  6. We report a transformative epoxy system with a microalgae-derived bio-binder from hydrothermal liquefaction processing (HTL). The obtained bio-binder not only served as a curing agent for conventional epoxy resin (e.g., EPON 862), but also acted as a modifying agent to enhance the thermal and mechanical properties of the conventional epoxy resin. This game-changing epoxy/bio-binder system outperformed the conventional epoxy/hardener system in thermal stability and mechanical properties. Compared to the commercial EPON 862/EPIKURE W epoxy product, our epoxy/bio-binder system (35 wt.% bio-binder addition with respect to the epoxy) increased the temperature of 60% weight loss from 394 °C to 428 °C and the temperature of maximum decomposition rate from 382 °C to 413 °C, while the tensile, flexural, and impact performance of the cured epoxy improved in all cases by up to 64%. Our research could significantly impact the USD 38.2 billion global market of the epoxy-related industry by not only providing better thermal and mechanical performance of epoxy-based composite materials, but also simultaneously reducing the carbon footprint from the epoxy industry and relieving waste epoxy pollution. 
    more » « less
  7. Abstract Hydrogen bonding is a central concept in chemistry and biochemistry, and so it continues to attract intense study. Here, we examine hydrogen bonding in the H2S dimer, in comparison with the well-studied water dimer, in unprecedented detail. We record a mass-selected IR spectrum of the H2S dimer in superfluid helium nanodroplets. We are able to resolve a rotational substructure in each of the three distinct bands and, based on it, assign these to vibration-rotation-tunneling transitions of a single intramolecular vibration. With the use of high-level potential and dipole-moment surfaces we compute the vibration-rotation-tunneling dynamics and far-infrared spectrum with rigorous quantum methods. Intramolecular mode Vibrational Self-Consistent-Field and Configuration-Interaction calculations provide the frequencies and intensities of the four SH-stretch modes, with a focus on the most intense, the donor bound SH mode which yields the experimentally observed bands. We show that the intermolecular modes in the H2S dimer are substantially more delocalized and more strongly mixed than in the water dimer. The less directional nature of the hydrogen bonding can be quantified in terms of weaker electrostatic and more important dispersion interactions. The present study reconciles all previous spectroscopic data, and serves as a sensitive test for the potential and dipole-moment surfaces. 
    more » « less